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CONSTITUTIVE EQUATIONS FOR ELASTIC-PLASTIC
MATERIALS AT FINITE STRAIN

L. B. FrReunD

Brown University, Division of Engineering, Providence, Rhode Island 02912

Abstract—Constitutive equations are suggested for describing the behavior of elastic—plastic materials undergoing
large strains. A special kinematical viewpoint is taken, so that the elastic and plastic deformation processes can
be considered separately. This separation is also accommodated by a simplified thermodynamical theory of the
deformation process. The elastic constitutive equation is written as a rate equation, after examining the inter-
pretation of elastic isotropy in view of the particular kinematical description employed. To describe plastic
deformation, a rate equation, which exhibits no dependence on the rate at which previous states have been tra-
versed, is suggested. After the general relations have been put in appropriate form some simplifications based on
physical assumptions are considered. The physical assumptions are based on the behavior of metals under large
stress, high speed loading, such as in the penetration problem. Under these operating conditions, the thermo-
elastic effects dominate and plasticity plays a minor role. Consequently, a simple model of plastic deformation
usually suffices. The analysis is presented in direct (matrix) notation and is valid for arbitrary stress states.

INTRODUCTION

DURING elastic-plastic deformation processes of metals, under most conditions of opera-
tion, either the maximum elastic and plastic strains achieved are infinitesimal and of
roughly the same order (about 10~3), or the plastic strains become so much larger than
the elastic strains that the plastic strains must be considered finite and the elastic strains
may be neglected. In certain applications, however, both elastic and plastic strains must
be considered finite. It then becomes necessary to construct constitutive models for elastic—
plastic materials undergoing finite deformation.

A fact which must be kept in mind in the formulation of constitutive equations is that
the most one can expect of any mathematical model of material behavior is that it provides
a useful description of the salient features of the behavior of a real material under limited
environmental conditions. Under different conditions of operation a structural metal may
behave as though it were elastic, viscoelastic, elastic—plastic, or fluid. Consequently, we
limit consideration here to conditions encountered in the penetration problem, for example,
where metals are subjected to high-speed loading resulting in a multi-dimensional stress
state with a large (up to 100 kb, say) hydrostatic component. A thermoelastic effect is thus
dominant, that is, the main resistance to deformation is due to compressibility, and material
rigidity offers only secondary resistance. Since plasticity effects are only secondary, we
employ a very simple description of plastic flow incorporating such simplifications as
rate-independence and isotropy. Our objective is not to classify material behavior through
the formulation of very general and complex constitutive equations, but rather to suggest
relations which might be practically used in the numerical solution of boundary value
problems.

Fundamental to the development presented here is the recent work of Lee and his
colleagues. In [1] and [2] the groundwork is presented for the analysis of plane waves in
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elastic-plastic materials at finite strain and in [3] approximate constitutive equations are
proposed. In [4] Lee generalizes some of the previous work to three-dimensional stress
states. Very general discussions of constitutive laws have been presented by Green and
Naghdi [5], Perzyna [6] and Sedov [7], but these aim more at material classification than
at application. The kinematics employed is based on the works of Lee et al,, Freund 8]
and the monograph of Truesdell and Toupin [9], and we include only enough results to
establish the notation.

Most mathematical symbols and equations in this section, as well as in following
sections, will be written in direct (matrix) notation, because this form seems to lend itself
to quicker and easier interpretation. In special instances, however, we will resort to tensor
{index) notation to emphasize important results or to exhibit particular detail. When the
tensor notation is employed, upper case Latin indices relate to the initial configuration,
lower case Greek to the reference configuration, and lower case Latin to the current
configuration.

As in [1-4], the deformation at any time is viewed as a rigid—plastic deformation of
the initial configuration into an imaginary, intermediate configuration superimposed on
a thermoelastic deformation of the intermediate configuration into the current configura-
tion. With the introduction of this intermediate state, it can be shown that the total rate
of deformation can be written as the sum of appropriately defined rates of elastic and
plastic deformation. The total deformation is described by the deformation gradient F,
which is defined by

.
F= X i)
13). O

where x is the position at time ¢ of the particle originally at X,. With the introduction
of the intermediate reference configuration, F has the noncommutative representation

F = FF?, {3

where F° and F¥ are the tensors defining elastic and plastic deformation, respectively.
In general, F° and F7 are not gradients of vectors. As pointed out in [4], the decomposition
(3) is not unique because the reference configuration is not unique. The most convenient
strain measure for discussing the elastic deformation is C defined by

C = (F)TF*. 4

This is the familiar Cauchy—Green tensor of the theory of elasticity. The tensor C is related
to the material elastic strain E° by

4

2E¢ = C-1. (

The fundamental measure of rate of change of configuration will be taken to be the
stretching tensor, which defines a measure of the rate of change of current length per unit
current length. This measure depends only on the current configuration. The stretching
tensor D is defined by

D = sym(FF ). {6)
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It is shown in [8] that, even though F° and F? are not velocity gradients, D may be written
as the sum of an elastic stretching D¢ and a plastic stretching D?, where

D = sym(FeFe_‘), (7
D? = sym(FF?F? 'F¢ "), (®)
D = D*+D". 9)

The elastic stretching is the rate of deformation of the current state with respect to the
reference state, while the plastic stretching is the rate of deformation of the current con-
figuration due to the changing reference configuration. The elastic stretching is related to
C by

C = 2AF°)"D°F~. (10)

The antisymmetric tensors corresponding to the stretchings are the spins, denoted by
W, W¢, W?_The components of the spin tensors are, essentially, the averages of the angular
velocities of line elements along two coordinate directions about the third coordinate
direction. Furthermore, W = W¢+W?,

One additional quantity of interest is the stretching of the reference configuration,
defined by

D* = sym(F?F? '), (11)

the corresponding spin being W?. Following [9], D® is called the slippage rate period. The
corresponding spins are related to the plastic stretching and spin by

F(D*+ W F¢ ' = DP + WP, (12)
Fo ' (D —WOF®" = D? — WP, (13)
THERMODYNAMICS

The formulation of a problem in continuum mechanics which involves the coupling
of mechanical and thermal effects must be based on a thermodynamical theory. Unfortun-
ately, the development of a thermodynamical theory of plasticity which is general enough
to cover a reasonable range of material behavior, yet specific enough to be useful, is in a
preliminary stage. The problem is being attacked, on the one side, by way of a general,
mathematically consistent phenomenological approach, e.g. [6], and on the other by way
of a detailed microstructural approach, e.g. [10]. In view of the situation, we fulfill our
immediate needs by adopting the simple phenomenological theory of Lee [4]. Since the
intended application is to metals at high deformation rates, we assume the deformation
process to be adiabatic.

Lee’s thermodynamic description is based on a weak interaction of a thermoelastic
system and a simplified plastic system. It is assumed that, at any instant, some fraction,
say 7, of the plastic work is converted into heat, the remainder of the plastic work being
stored as a residual free energy due to elastic distortion of the crystal lattice in the neighbor-
hood of dislocations. It is assumed, further, that this residual free energy does not affect
the stress distribution. The heat generated by plastic work is taken to be an internal heat
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source for the thermoelastic system. These assumptions are incorporated in writing the
laws of thermodynamics in the following form:

PYres = (1 =7) tr(TDP) (14a)
Py + 56 +50) = tr(TD¢) +» tr(TD?) (14b)
§—ytr(TDP)/0 > 0 (14c)

where p is current mass density, ¥, 1s residual specific free energy, T is the true stress,
y 1s elastic specific free energy, s is specific entropy and 6 is absolute temperature. Equa-
tions (14a, b) together are a statement of the first law of thermodynamics, (14c) being a
statement of the second law.

Before proceeding, the various descriptions of stress employed are defined. The tensor
T, already introduced in (14), represents the true stress. A second stress tensor is defined
in terms of the true stress and the elastic deformation by

TYp" = (T/p)(F¢ "', (15a)

and is referred to as the first Piola—Kirchhoff stress tensor, the Lagrange stress tensor, or
the mixed stress tensor. In (15a), p" is the density of the reference configuration. Another
useful description of stress is defined by

Tp" = ¥ (T/p)(F . (15b)

The tensor T* is referred to as the second Piola—Kirchhoff stress tensor, the Kirchhoff stress
tensor, or the material stress tensor.

Since it is desired to write the rate of deformation and entropy in terms of stress and
temperature, the appropriate thermodynamic potential is the specific free enthalpy y.
which is related to the specific free energy by

x = Y —t[(T"/p")(F)"). (16)

Substituting (16) and (14b) into (14c) and employing the fact that, at any given stress and
temperature, the stress rate and temperature rate are arbitrary, we obtain the result

ox , ox ,

e _ - % 17:
S U7 Tk e
p0s = 7 tr[TD?]. (17b)

Relations (17a) are the constitutive equations for the thermoelastic process, and (17b)
couples the thermoelastic and plastic processes. We cannot derive useful restrictions on
the constitutive equations for plasticity from (14a) similar to (17a), simply because we do
not yet know how to select a reasonable and consistent set of state variables and state
functionals [11].

In general, at each material point, the quantity y will depend on the thermomechanical
history. However, the variation of y during any actual process is usually small (see [1]),
and the value of y is assumed to be constant and in the range 09 <y < 1-0.
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GENERAL FORM OF THE CONSTITUTIVE EQUATION

The weak coupling of elastic and plastic effects discussed in relation to the thermo-
dynamics allows us to consider the salient elastic and plastic features of the deformation
process separately. The kinematics of the problem suggests that a reasonable way of
combining the separate results is to seek the elastic stretching and plastic stretching in
terms of stress and temperature and then add the two rates as indicated in [8]. There is
also a geometric coupling between elastic and plastic effects due to the fact that the reference
state of elastic deformation varies with plastic flow, and also that the description of plastic
deformation is given in the reference configuration, since this is the configuration of the
body due to plastic deformation alone.

Relation (17a) gives the general form of the elastic constitutive equation for a material
described by a free enthalpy function. Assuming the enthalpy to be a function of Kirchhoff
stress and temperature, application of the chain rule to (17a) yields the equivalent, but more
convenient, form

ox

=———EZTk ¢ N 18
C ) (TYp", 6) (18)

Suppose that the material under consideration is elastically isotropic. In the usual
theory of elasticity, the reference or undistorted configuration and the initial configuration
coincide. Material isotropy is then equivalent to the condition that the response of the
material to any stress state, measured from the reference configuration, is invariant under
rotation of the reference configuration. If the constitutive equation is written with respect
to a basis fixed in the undistorted reference configuration, i.e. a material basis, then material
isotropy is expressed by the condition that the response function be an isotropic tensor-
valued function of its arguments. The situation is somewhat different here. The reference
configuration, which varies with time, is distinct from the fixed initial configuration. At
each instant of time, however, a constitutive equation such as (18) is written with respect
to a basis in the reference configuration, which is not a material basis. Consequently, the
condition on the response function imposed by the assumption of isotropy must be modified.

This modification proceeds as follows. Limiting consideration to a generic material
particle and any instant of time, we first transform the constitutive equation (18) from the
fixed spatial basis to any orthogonal basis fixed in the material. This transformation is
defined by the orthogonal tensor Q,. At the same material particle but at a different
instant of time, the material lines which had coincided with the above material basis are
no longer orthogonal and a different material basis must be selected. That is, at each instant
of time, Q, is a transformation from the fixed spatial basis to an orthogonal material basis,
but the material base vectors coincide with different material line elements at different
times, and Q; = Q,(¢). While it does not play a major role in the discussion of isotropy,
the way in which Q, varies with time is very important in the subsequent discussion of
rate equations. The constitutive equation resulting from this transformation is a description
of material behavior with respect to a material basis in the reference configuration, and
the isotropy condition may then be imposed in the usual way by introducing the constant

orthogonal tensor Q,. Setting Q = Q,Q,, the assumption of elastic isotropy implies that
the response function X must satisfy the condition

QE(TYp", Q" = Z(QT*Q"/p", 6) (19)

for all Q, and Q. Relation (19) does not differ in general form from the equivalent condition
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of the usual theory of elasticity. As we have discussed, however, Q has a very special
interpretation in our case.

The desired rate law of elasticity is obtained by differentiating (19) with respect to time
at each material point. We encounter the usual kinematical difficulty that, even though
certain quantities transform as tensors under general observer transformations, the material
time derivatives of these quantities do not transform as tensors. By observer frame, or
simply observer, we mean a basis undergoing some motion, and an observer transformation
defines the relative motion of two observers. If two observers are not undergoing relative
motion they are said to be equivalent. Since any constitutive equation must be independent
of the observer, the elasticity rate law must be written in terms of frame-indifferent stress
rates. Such rates are introduced in the following manner [9]. First, we choose a particular,
or preferred, observer frame which is selected because the time derivative of the stress
tensor transforms as a tensor under the class of transformations among all frames equivalent
to the preferred frame. A general stress rate is then sought which (a) reduces to the time
derivative of stress in the preferred frame, and (b) transforms as a tensor under the class
of all observer transformations. Since Q, 1s a transformation to a material basis, its presence
in (19) suggests an observer rotating with the material as the preferred observer, and this
is the point of view we pursue.

In the usual terminology, an observer frame which is instantaneously fixed in the body
is called a co-rotational frame. At any material point and any time, there are an infinite
number of co-rotational frames, all of which are equivalent observer frames. Because of
this equivalence, we may choose one co-rotational frame over another, for the sake of
convenience, without losing generality of the kinematic description. The most convenient
choice is that co-rotational frame which instantaneously coincides with the fixed spatial
basis at that point, that is, Q = 1. However, since the co-rotational frame is instantaneously
material, Q = W*. Carrying out the calculations suggested by conditions (a) and (b), with
co-rotational frame as the preferred frame, we are led to the following definition of a
frame-indifferent rate for any symmetric second order tensor A,

A = A—WAL+AWS. (20a)

This rate measure is called the co-rotational rate (with respect to the reference configura-
tion). As pointed out by Prager [12], it has the property that

AA, = AA, +AA,. (20b)

Relation (19) is now differentiated with respect to time for arbitrary Q, keeping in mind
that Q is a transformation from the fixed spatial basis to any material basis. After differen-
tiation the choice of preferred frame is made, ie. we set Q =1 and Q W, and the
following relation results?

C = Kq{T*p"] + M0 + WC — CW*, (21a)

where
K¢ = 0XL/0(T% p", M¢ = §%/06. (21b)

A similar calculation is carried out by Noll in Section 15 of [13].

+ Fourth order tensors, which are viewed as linear operators in the nine-dimensional space of second order
tensors, are denoted by boldface with a wavy underscore, ~ , and the argument of the operator is put in square
brackets. In index notation (K[T]); = KT
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The final form of the constitutive law which we seek is an expression for the total
stretching in terms of true stress and temperature. We hope to reach this form by expressing
the elastic stretching and the plastic stretching, separately, in terms of true stress and
temperature, and then taking advantage of the additivity of the stretching. To transform
(21) into the desired form, consider first the co-rotational stress rate. From (15b) we have

) = F WaE T 22)
Decomposing F¢ into a pure rotation R® followed by a pure deformation V° as
F¢ = V*R®, (23)
we carry out the operation indicated on the right side of (22). Using the kinematic relation
R® = WR*—R°W", (24)
we arrive at the result
o e
(T*/p") = (R*)" V*"(T/p)V* ™ R°. (25)

The frame-indifferent rate introduced on the right side of (25) is the co-rotational rate taken
with respect to the current configuration and is defined, for any symmetric tensor A, by

A=A-WA+AW. (26)
An expression for the elastic stretching in terms of C is obtained from (11) as
2D° = (F* )'CFe
= V¢ 'RCR)TVe @n

Consequently, the constitutive equation for the elastic part of the deformation is

v
2D° = VGV (T/p)Ve TV Ve HOOVE T+ (F ) WAE)T —FWFe L (28)
where

Ge — Re{ Re[(KeReT)ReT]}

(29
H° = R°M°R*". )
In index notation, omitting the superscript e,

Giju = RigR;uK#* "Ry Ry, (29a)

Hij == RiuMalgRjﬂ.

Consider now the irreversible or plastic part of the deformation process. As stated
above, the reference, or intermediate, configuration is the state the body would be in due
to plastic deformation alone. We take the point of view that this configuration is the
current state of a plastic-rigid material and discuss the changing reference state accord-
ingly. The variables used to describe the material behavior will all be defined in the reference
state. The concept of finite strain is not used here, implying that the plastic-rigid material
does not have a “natural” state. Furthermore, for the applications we have in mind, the
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deformation process is taken to be rate-independent. That is, the instantaneous state of
the body depends on all previous states only through the order in which they have occurred.
The apparent stress in the reference state is called T”, and is defined for elastically isotropic
materials by

1 I
— tr[T'D*] = — te[TD?], (30)
p p

where p” and p are mass densities in the reference and current configurations. Relation (30)
states that the rate of plastic work per unit mass in the reference configuration is the
actual observed rate of dissipation per unit mass, independent of the elastic deformation.
Assuming (30) to hold for arbitrary deformation processes, we can solve for T" in terms of T.
Because the trace operator is linear, and because the spin tensors are antisymmetric, (30)
can be rewritten

1 1
o tr[T(D* + W¥)] = ;tr[T(D" + W) (30)
Employing (13), this relation becomes
1 |
tr[(—,T'—FP TFE)(DS+WS)] = 0. (31)
PFp ]
If this must hold for all possible deformations, then we conclude that
T /p" = F¢ '"TF/p. (32)

As in (23), F° has the representation

F(‘ — VCR?‘
where the symmetric tensor V¢ is a pure deformation and R® is an orthogonal tensor.
For the elastically isotropic materials being considered, the principal directions of T and

V¢ coincide and, therefore, T and V¢ commute under multiplication. Relation (31) may be
written in the form

T'/p" = (R®)TTRY/p. (33)

The stress T is not the Kirchhoff stress, but is instead an apparent stress producing plastic
flow of the reference configuration. The apparent stress is related to the actual stress through
the work equality (30).

We assume the law governing the plastic deformation to be of the rate type. In particular,
we assume that the instantaneous rate of deformation of the reference configuration is
determined uniquely by the instantaneous apparent stress and stress rate, and a set of
scalar functions of position and time «;, i = 1,2,...,n, and their derivatives. Using the
preceding statement implies the existence of a function A such that

L = A(T/p", T'/p", 0. ). (34)

Because L® and T” transform as tensors only under the class of transformations among
frames rotating with the material, we must interpret (34) as a tensor equation in an arbitrary
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frame rotating with the material. Suppose the transformation from the fixed spatial frame
to this rotating frame is defined by R. Relation (34) may then be rewritten as

RD°R” = ARRT'R”/p", R(T"/p)R”, o, &). (35)

In particular, at each instant of time we can select that co-rotational frame which
coincides with the spatial frame, that is, R = L, so that

D* = A(T"/p", T'/p", i, &;). (36

Combining (35) and (36), we obtain the condition on A

RA(T/p", T'/p", o;, @)RT = ART'RY/p", R(T"/p")RT, a1, ). (37)

Because R is arbitrary in (33), condition (37) states that A is an isotropic function of its
arguments and, consequently, (36) is an isotropic flow rule. The assumption of rate
independence is incorporated by writing (36} in the form

D= K| T+ M, ()

where the fourth order tensor K* and the set of second order tensors M;, i = 1,2,...,n,
are functions of T'/p" and «;. The response functions K* and M, could also depend on ratios
of the components of T" and/or &;, and still represent a rate independent process. The
point T" = 0, &; = 0 would then be a branch point of the response functions, however,
and we preclude such a situation by writing (38). It can be shown for the particular case
of isothermal deformation of rate independent stable materials that K® has no such branch
points [14].

We can draw several possibilities for the set of scalar functions «; from the theory of
infinitesimal plastic deformation [15]. The temperature is, of course, included in the set.
Other frequently selected parameters are the arclength of plastic strain history in nine-
dimensional strain space and the accumulated plastic work per unit mass. Consequently,
we might set

1
o =8, o = J. Etr[T'DS] dr,
4]

. {39a)
% = fo (4 [(F?)TDFP d,

where we tacitly assume that the process begins at ¢ = 0. A further possibility is to allow
one or more of the scalar functions to weight the history of another. For example, Lee [4]
employs

" (o,
oy = L ;ozr )tr[T"D‘] dr. (39b)
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The quantity a, is considered to be a hardening parameter and & is an increasing function
of «;. Monotonicity of 4 is deduced from the argument that by increasing the temperature
of a metal we can achieve a certain dislocation density, or degree of hardness. through
the expenditure of a decreasing amount of plastic work.

We can generalize the notion of “effective’ stress, discussed by Prager [16], if the
constitutive equation depends on the set «; only through a single scalar function o{o,}
which modulates the stress in some manner. The existence of such a ¢ implies the repre-
sentation of M; in {38)

and the flow law takes the form

Ds =g~ IISS[O'Tr/pr], (40)

where K* depends only on 6T"/p’. The scalar stress tensor ¢'T" is called the effective stress.
If we let B be the “argument” of K® in either (38) or (40), then the most general form
of K¥[B] is [12]

K[B] = (A, tr(B)+ A, tr(T"B)/p" + A5 tr(T"B)/(p")? 1
+ A, tr(B) + A tr(T'B)/p" + Ag tr(TB)/(p") 2T /p"
+ A5 tr(B) + Ag tr(T'B)/p” + Aq te(TB)/(p") } (T7/p")?
+A1oB+A (BT +TB)/p" + A, (BT + T B)/(p">. (41)
where the twelve scalars A,, k = 1,..., 12 are functions of the «; and the invariants of
T'/p" for the form (38), or of the invariants of ¢T"/p" for the form (40).
In addition to the flow rule for the rigid-plastic material, we prescribe a yield function
by which we determine whether the material is indeed flowing under a given stress state

and set w;, or whether it remains rigid. Thus, it is supposed that, in the nine-dimensional
space of second order tensors, a surface exists and is defined by the equation

f(T/p" o) = 0. (42)

The surface is defined so that for ' < 0 the material remains rigid, while for f = 0 flow
takes place; the region f > 0 is inaccessible. For f < 0, K* = 0: for f = 0, K* has the
form given in (41).

Whereas (38) expresses D® in terms of apparent stress and o, it is a representation of
D? in terms of true stress and «; that we require. To express T7/p” in terms of the true stress,
we apply the definition (20) to (33)

Tr/opr — (Re)TTRe/p + (Re)T(T/;)Re n (Re)TTRe/p
— WHR*)"TR/p +(R*) ' TR*W¥/p. 43)

Using the kinematic relation (24), equation (43) reduces to

< Y
(T"/p") = (R (T/p)R", (44)
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where the definition (26) has been employed on the right side of (44). Adding the kinematic
relations (12) and (13), decomposing F¢ according to (23), and substituting the representa-
tion of D® given in (38), we obtain

Y. _
2D? = VGP[T/p+ N, JVe ' + Ve 'GP[T/p+ N&,]Ve + FEWSFe ' — (F¢ "\TWS(F9)T.  (45)
In (45),

G’ = R{R[(KR*" )R]},

) o (46)
N’ = R°M'R®".
Finally, by adding (28) and (45), we get the general form of the constitutive law
. A— , LY
D = 3VE GV (T/p)Ve 1+ HO+ VG [T/p+Nyg,]
_v 5 -
+GA[T/p+ N, JVIVe (47)

Observe that the terms depending on spin W* have cancelled. The main physical assump-
tions incorporated in (47) are elastic isotropy and rate-independence. In the following
section, the consequences of several more assumptions, valid for most metals undergoing
finite deformation, will be investigated. ’

RESULT OF PHYSICAL ASSUMPTIONS

What we seek is a description of the behavior of most metals subjected to the particular
environmental conditions of large stress, high speed loading, Under the action of the
large pressures encountered in these situations, most metals can sustain large but recover-
able volume changes. However, during elastic—plastic deformation of most metals, yielding
begins before elastic shear strains increase to the point where they must be considered
large. Thus we assume that the elastic shear strain is small, even though the plastic shears
may be large.

The above physical assumptions are incorporated, albeit indirectly, by introducing a
characteristic material constant with the dimensions of stress, say K, and writing

TK = S¥/K —IP¥/K,

Pt = —Ltr[TH. “

It is then assumed that the tensor S*/K is small, that is, the magnitude of each element
of the tensor is much less than unity. A reasonable choice for K would be the initial slope
of a pressure vs. dilatational strain curve, which is the bulk modulus of linear elasticity
theory. For example, suppose we want to describe the behavior of steel (K ~ 3 x 107 psi)
under environmental conditions involving pressures of up to 1-5x 10°® psi. (For higher
pressures a hydrodynamic theory is usually applicable.) Then P*/K < 005, and a power
series representation of a deformation measure about P*/K = 0 should converge quickly.
The goal of this section is to obtain an expression for the elastic response function
dC/a(T*/p"). The calculations which must be carried out are simplified somewhat if we
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assume here that the net volume change associated with plastic deformation is zero vhich
implies that p* = p,, a constant. Relation (21b) becomes

ac

K= poopic {49

Whereas the assumption concerning plastic volume change would topically be more
appropriate in the subsequent discussion of the plasticity law, it is convenient to employ
it here.

For an isotropic elastic material the free enthalpy is an invariant and, therefore,

g = y(I¥, 1%, 111%)

where the arguments of y are the three principal invariants of T*. Carrying out the
differentiation process indicated in (49} we obtain

C = po{Ael + A4, TYK + Ay(TY/K)*}, (50)

where

Oy 0y 0%
Ao = [ K _p K fyp E
0 (51" AT AN

Oy dy ay -
Ay = K| —SE g, - k2 st
! ( BTG amk) 2= R e

The assumed form of the free enthalpy function is a power series expansion in the invariants
I*, I1%, 111*. Introducing the dimensionless sets of temperature dependent material para-
meters a;, by, ¢;, d;, we write

i v

= g‘{awall"/K +by(IYK)2 + by 1T K2 + ¢ (1KY + M1 K + ¢ T K
0

4 d, (IK)* +dy (TR K+ dy(1TF K2+ dIFIITK S + - (52)

An approximate expression for the right side of (50) is now derived, based on the as-
sumed smallness of S¥/K. Letting § = P*/K and & « 1 be the magnitude of the largest term
of S¥/K, approximate expressions for the stress invariants are

I* = —3Kp
I = K2[38%+0(d)]
I = — K3[B* +o(¢)). (53)
Substituting (53), (52), (51) into (50) and neglecting terms which are o(&), we find
C = Ip(B)+4q(B)S*/K, (54)

where
p(ﬁ) = al "21)1[3“{"‘(27[.1 _9C2 +C3)ﬁ2 +(_4d1 + 18d2+ 12d3 “21d4)ﬁ3 (553)
q(B) = by — (3¢, + 5¢3)p +(9d, +6d5 + 15d,)p° (55b)
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Suppose we give the elastic deformation tensor F¢ the representation
F=R%I+H), u[H]=0, (56)

where J is a scalar function and H is small. The form (56) is compatible with our assumption
that pure elastic deformation is a small deviation from a uniform dilation. An approximate
expression for C is then

C = (F'F° = 6?1+ 26H + o(H). (57)

The function g is now reduced to a single constant by making the following assumption:
The force required to induce a small shear strain in an element of material under arbitrary
dilatation is independent of the amount of volumetric strain. In terms of the true stress
deviator S, the supposition implies

5?8 = 2uR°H(R®)T (58)
where u is the constant (perhaps temperature dependent)} shear modulus. Comparison of
(58) with (57) implies

9f) = K/p. (59

For comparison with Murnaghan’s work on stress-strain relations [17], we note that the
measure of dilation J used here is related to his measure e through 6% = 1—2e.

It remains to differentiate (54) to obtain K¢ under the assumptions being employed here.

It is convenient to carry out the differentiation treating C as a function of the eight in-

dependent components of S*/K and B, rather than the nine components of T/K, and
differentiating by the chain rule

., aC ac 381 ocC op
K= popre = ""{t{a”s?aw} % ark} (©0)

The quantities f and S* are given in terms of T* by
1
=gt
k k 1 k
S=T _§I tr[T*].

The result of carrying out the differentiation indicated in (60) is

K = — (313‘; 5 I><I+p021 (61)
where, in index notation,
(I xI)p*, = 8%0%,,
@, = 8,8%, +8,8 . {(62)

The response function K* is expressed as a zeroth order function in S*/K because C was
only first order and the order to which expansions may be accurately carried is reduced
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by differentiation. That {61) represents the most general zeroth order expansion in §*/K
can be seen by considering (41), which is the most general expansion of a fourth order,
isotropic tensor function of a second order tensor. If the argument tensor is diagonal. as it is
for §*/K = 0, the only terms remaining are those with the form exhibited in (61). Letting
b, be an appropriate function of Poisson’s ratio, (61) can be reduced to the response function
of linear elasticity.

The consequences of some assumptions concerning the plastic flow are now investigated.
The objective is to reduce the complicated response function given in (41) to a simpler
form. Consistent with experimental evidence from tests on most metals, we assume our
material to be stable in the small, and to undergo deformations which are deviatoric and
independent of hydrostatic pressure.

For large deformation problems, we take the generalization of Drucker’s stability
postulate [14] to be

tr[D*B] > 0, (63}

where, as in (41)
B = (T/p)+ Y Mg, {64}

In (63), equality holds only when B = 0. The constitutive equation (38) then implies the
following condition on K, for any B,

tr[K*[B]B] > 0. (63)

That is, K® is a positive operator on the space of second order tensors. Let y, be the nine
eigenvalues of K*, and let r* and I* represent the corresponding right and left eigenvectors.
Then, with the set I* as basis in the nine dimensional space, D° has the representation
9
D* = 3y, t[rBJI
k=1

We now assume that the kth component of stretching depends on B only through the
component of B in the kth direction. Then r* = I*, and K* is symmetric, that is

K = Kxuvz/}‘ (60)

s
afuv

Relation (66) generalizes the condition in the theory of infinitesimal plastic deformation
that the strain increment depends only on the component of the stress increment in the
direction of the strain increment. The symmetry property (66) imposes the condition

A2 = /\4‘ A3 = "/\7s /\(, = ‘/\8

on the scalars of (41).
Next it is assumed that D* is independent of the hydrostatic component of T". Thus, we

replace T in the constitutive relation by 87 = T"+1P", where P" = —tr(T7)/3. Calcula-
tions are also simplified if we assume M, to be proportional to 8, so this additional assump-
tion is made. The latter assumption is consistent with the notion of effective stress discussed
in relation to (40). Under these assumptions tr(B) = 0 and the scalars A, A4, A, have been
eliminated from (41).
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We now limit ourselves exclusively to the form of the flow rule given in (40) where the
effective stress is the actual stress multiplied by a single scalar. That is, in (41) we set

—_
B = ¢~ 16S"/p". The condition that the plastic deformation be deviatoric is satisfied by
requiring that tr[D¥] = 0, along with the initial condition p” = p,. Imposing this condition

on the remaining terms of (41), and observing that —3 tr[(S")*] is the second principal
invariant of 8", say II", we find that
3A, —2A4IT(p")* +2A,, =0 (67a)
3A; =2A,0T"/(p")* +2A,, = 0. (67b)

Equations (67) allow us to eliminate two more of the set of coefficients A,.
The yield function (42) is written in the special form

feT’/p7) =0, (68)

which is interpreted as a hypersurface in stress space. As in the theory of infinitesimal
plasticity [14], the stability postulate leads directly to convexity of the yield surface and
normality of the deformation rate to this surface. In terms of the yield function, the nor-
mality condition is expressed as

_@of
T e oT"

S

(69)

where @ is a scalar function of stress and ¢ which is homogeneous of degree one in

oT". The symmetry condition (66) then automatically requires that

0f ==
= 00tr [ ok ] (70)
where Q is a scalar function of stress and ¢. The flow rule then takes on the familiar form
s_odf |0 =
D QaT’ |:6T' T] (71)

Since the assumed flow rule (40) is an isotropic one, we might wish to associate an isotropic
yield function with it. That is, we assume f'to depend only on the invariants of the effective
stress. Incorporating the assumption that hydrostatic pressure does not influence yield, the
yield function becomes

JU2,J3) =0, (72)
where
Jy = —3(o/p")* (8], J3 = 3a/p") tr[($)°]. (73)
The gradient in (71) is calculated to be

of o foo6 f[[e,0)® 2
aT,*p,{ EI—ZSE-FE':(S*) +§J21:|}. (74)
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We can now show that of the twelve scalar functions-appearing in the response function
(41), only two remain. At this point the remaining independent terms are A, k = 5. 6,9, {0.
11, 12. The separability of K°® required to write (69) implies that

AIO = Ay = Ay, =0
Ao = AJAS.
The resulting form of (41) is
K°[B] = {FIVASL/(p")* + AKS /") + A§(S"/p")} tr[{ZITASL/(p")?
+ A(ST/p") + AY(ST/p")*B]. (75)

Comparing (75) with (74), we can see that (75) and (71) have exactly the same form if we
make the identification

wo’z af (A-/Q)!
p"ad, = (AsAD%
(RN 76)
oo, = (Ag/Q)=. (76)

As a particular case, we assume Jf/8J, =0, 6f/dJ, = 1 and Q = J,). The flow rule
reduces to the usual Hencky—Mises law

r

r

4 =
D = Q(ﬂ) (r[Sr0ST>
p p

with a Mises yield criterion.

CONCLUSION

The primary purpose of this paper was to demonstrate that, under assumptions which
are usually valid for most metals undergoing large strain, high velocity deformation, very
general constitutive laws could be reduced to a tractable form for multi-dimensional
deformation processes. It was possible to carry through this development primarily because
of the assumed weak interaction between elastic and plastic processes. By introducing the
intermediate reference configuration, the aspects of elastic and plastic deformation could be
discussed independently and in familiar terms. These separate results were then combined
by observing additivity of the elastic and plastic stretching tensors, and by assuming a weak
thermodynamic coupling between elastic and plastic effects.

Concerning applications, Murnaghan has shown that, for elastic deformation of the
metal sodium, a theory involving volumetric strains only up to the second order often
gave good agreement with experiment for pressures up to 100 kb.
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Abcrpakt—IIpennaratorcs onpeaensioulde YpaBHEHMsT AJS ONUCAHMA MOBENEHUS YNPYTO-IIACTHYECKUX
MaTepHaaoB, MOABEPKEHHbIX GobIuMM nedopManuam. Co creuMa LHOR KMHEMATHYECKOH TOMKK 3pEHUA
npouecckl yNpyro#t M nnacruyeckoil JeopMalny MOXHO PACCMATPUBATH HE3ABHCUMO. DTO pa3ielieHue
npucnoco0uBaeTcs, Takke, YMNPOWEHHON TEPMONMHAMHYECKOH Teopuell npouecca nedopmaimy,
TlpencrasasieTcs onpenensollne YpaBHEHHE B YIPYToi 061acTH Kax ypaBHEHME CKOPOCTH, IOCIIE MCCie-
OBaHKA HHTEPNPETALMM YNIPYToi H30TPONKHU, C TOUKH 3PEHHS NPHHATOrO MOAPOBHOTO KHHEMATHYECKOTO
onucaHus. [Ins onucaHus Xe nuacTuyeckoil aedopmauuu, npeajiaraeTcs YpaBHEHHE CKOPOCTH, KOTOpoe
APOSIBIAET HE3ABUCUMOCTb OT CKOPOCTH, NPH KOTOPOH PacCMaTpuBaiMCh MNpPEnbIAyLIME COCTOAHUSA.
[Tocne npuema o6wmx 3aBUCMMOCTEH B NOAXOAALICH (OPME PACCMATPHBAIOTCH HEKOTOPbIE YHPOILEHMs
OCHOBAHHBIE HA (PU3IMYECKUX NIPEITIOKEHUAX. DTH PHU3MUECKUE MPEANTONOKEHUS OCHOBAHHBIE Ha TIOBEAEHHIO
META/IOB ITOA BIMAHUEM GONbLIMX HANPSXEHHH, GONBLIOH CKOPOCTH HATPY3KM, TAKMX KaK B 3azaue [po-
Hukanus. [lpn ydete >Tux ycnoeuit, npeoGiagaroT TepMoynpyrue >dMeKTbl U IHIACTHYHOCTH UIPaeT
MEHBWYIO ponb. CAENOBAaTENbHO, HECIOXKHAS MOJESb MNACTHYECKOH nedopMaluu OBbIYHO NOCTATOYHA.
lpennaraercs ananus B 3MeMeHTapHON /MAaTPHUHON/ 3anuck. DTOT aHANM3 YAOBIETBOPAET IPOU3BOIHBIM
COCTOSIHUAM HATIPSKEHUIA.



